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Abstract
This communication presents and explores ultra diffusions—a class of
random transport processes which generalizes the class of ‘classic’ diffusions.
Examples of ultra diffusions include Lévy motions, fractional Brownian
motions, fractional stable Lévy motions, Ornstein–Uhlenbeck motions driven
by symmetric stable Lévy motions and M/G/∞ processes. A methodological
framework of ultra diffusions is established—accommodating transport
processes which display, simultaneously, both ‘anomalous-diffusion’ temporal
behavior and ‘fat-tailed’ amplitudinal Lévy fluctuations. Ultra diffusions with
power-law temporal and amplitudinal statistics are shown to emerge universally
from a general superposition model of stochastic processes.

PACS numbers: 05.40.−a, 05.40.Fb, 02.50.−r, 05.40.Ca

1. Introduction

The most elemental class of random transport processes in science and engineering is the
class of diffusions [1]. A key characteristic of diffusions is the linear temporal growth of
their mean-square displacements (MSDs). Namely, if ξ = (ξ(t))t�0 is the trajectory of a
diffusion process, then its MSD is given by 〈ξ(t)2〉 = Dt , where D is the process’ diffusion
coefficient4. An important generalization of diffusions—with wide-ranging applications—
is the class of anomalous diffusions [2–5]. This class of processes is characterized by a
power-law temporal growth of their MSDs. Namely, if ξ = (ξ(t))t�0 is the trajectory of an
anomalous diffusion process, then 〈ξ(t)2〉 = Dtα , where D and α are, respectively, the process’
anomalous diffusion coefficient and exponent. Anomalous diffusions produce diffusions at

4 Throughout this communication the notation 〈·〉 denotes mathematical expectation. Namely, 〈R〉 is the expectation
of a real-valued random variable R.
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the exponent value α = 1, are termed sub-diffusive in the exponent range 0 < α < 1, and are
termed supper-diffusive in the exponent range α > 1.

The generalization of diffusion to anomalous diffusion—using the aforementioned MSD
characterization—has a major drawback: it implicitly assumes the existence of a finite
variance, thus excluding all transport processes with infinite variance. Transport processes
with infinite variance, however, are ubiquitous in various fields of science and engineering
[6, 7], and their incorporation into a generalized ‘diffusion class’ are of both theoretical and
experimental importance. In this communication we introduce a class of random transport
processes—termed ‘ultra diffusions’—which accommodates both temporal anomalies (i.e.
nonlinear MSD growth) and amplitudinal anomalies (i.e. infinite variance).

The mathematical model of diffusion is the Brownian motion B = (B(t))t�0—the
universal scaling limit of random walks. Brownian motion is indeed characterized by its
diffusion coefficient D. Alternatively, Brownian motion can also be characterized in Fourier
space: 〈exp(iθB(t))〉 = exp(−(Dt)(θ2/2)) (−∞ < θ < ∞ being the Fourier variable). The
Fourier-space characterization of Brownian motion has a special algebraic structure: it de-
couples into two terms—(Dt) and (θ2/2). The term (Dt) is a temporal factor which coincides
with the motion’s MSD. The term (θ2/2) is a Fourier factor which characterizes the motion’s
Gaussian law. Moreover, the Fourier-space characterization has a major advantage over the
MSD characterization: it makes no use of the finite variance of Brownian motion.

Based on the algebraic structure and the ‘variance advantage’ of the aforementioned
Fourier-space characterization of Brownian motion, we propose the following generalization
of diffusion. A transport process ξ = (ξ(t))t�0 is defined to be an ultra diffusion if its
Fourier-space characterization admits the form

〈exp(iθξ(t))〉 = exp(−c · ψ(t) · φ(θ)), (1)

(t � 0,−∞ < θ < ∞), where c is a positive coefficient. The factor ψ(t)—henceforth
termed the ‘temporal function’—is a function depending on the temporal variable t , alone.
The factor φ(θ)—henceforth termed the ‘Fourier function’—is a function depending on the
Fourier variable θ , alone. In the case of Brownian motion we have c = D/2, ψ(t) = t and
φ(θ) = θ2. More generally, the temporal function ψ(t) of an ultra-diffusion process—with
zero mean and finite variance—coincides, up to a scale factor, with its MSD:

〈ξ(t)2〉 = (cφ′′(0)) · ψ(t). (2)

Hence, the temporal function ψ(t) can indeed be considered as a generalization of the MSD—
extending the notion of MSD to ultra-diffusion transport processes with infinite variance.

2. Examples of ultra diffusions

Let us present now three general examples of ultra diffusions. The first general example of
ultra diffusion is the class of Lévy processes [8, 9]. This class constitutes of all processes
with stationary and independent increments, and has a multitude of applications in science and
engineering, including search and animal foraging [10–12], human travel [13, 14] and light
scattering [15]. In the case of Lévy processes the temporal function is linear ψ(t) = t , and
the general form of the Fourier function φ(θ) is given by the Lévy–Khinchin formula [8, 9].

Specific examples of Lévy processes include (i) Poisson processes—characterized by
the Fourier function φ(θ) = 1 − exp(iθ); (ii) compound Poisson processes—i.e. random
walks with jump-epochs following a Poisson process—characterized by the Fourier function
φ(θ) = 1 − 〈exp (iJθ)〉, where J is a random variable representing the amplitude of the
jumps; (iii) Brownian motion—characterized by the Fourier function φ(θ) = θ2; (iv) Cauchy
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motion—characterized by the Fourier function φ(θ) = |θ |. The last two examples—Brownian
and Cauchy motions—are the special cases of the sub-class of symmetric stable Lévy motions,
whose ultra-diffusion structure is characterized by

ψ(t) = t and φ(θ) = |θ |β, (3)

with exponent β taking values in the range 0 < β � 2. We note that albeit the special case
of Brownian motion (β = 2), all symmetric stable Lévy motions are of infinite variance. The
notion of ultra diffusion thus renders symmetric stable Lévy motions, a natural generalization
of diffusion—with a linear ‘MSD equivalent’, and with ‘fat-tailed’ probability laws (i.e.
Pr (|ξ(t)| > l) ≈ t l−β for l � 1).

The second general example of ultra diffusion is the class of processes which are stochastic
integrals driven by symmetric stable Lévy motions. Namely, processes admitting the integral
representation

ξ(t) =
∫ ∞

−∞
K(t, s)L̇(s) ds, (4)

where K(t, s) is a deterministic integration kernel and where L̇(s) is the derivative of a
symmetric stable Lévy motion (with exponent 0 < β � 2). The ultra-diffusion structure of
these integral processes is characterized by

ψ(t) =
∫ ∞

−∞
|K(t, s)|β ds and φ(θ) = |θ |β (5)

(the Fourier function of these integral processes coincides with the Fourier function of their
driving symmetric stable Lévy motions).

Specific examples of these integral processes include the following: (i) Ornstein–
Uhlenbeck processes [16–18]—characterized by the temporal function ψ(t) = 1−exp(−rβt),
where r > 0 is the corresponding relaxation rate. Ornstein–Uhlenbeck processes are the
solutions of the Langevin equation ξ̇ = −rξ + L̇ which, in turn, describes one of the
most elemental transport dynamics in physics and chemistry [19]. (ii) Fractional Brownian
motions [20]—characterized by the temporal function ψ(t) = t2H , where 0 < H < 1 is the
motion’s Hurst exponent (and β = 2). Fractional Brownian motions arise in various fields
including hydrology [21], DNA sequencing [22], heartbeat dynamics [23] and heat baths [24].
(iii) Fractional stable Lévy motions [25, 26]—characterized by the temporal function
ψ(t) = tβH , where 0 < H < 1 is the motion’s Hurst exponent (and 0 < β < 2). Fractional
stable Lévy motions are observed in plasma [27] and in solar wind [28, 29].

The third example of ultra diffusion is the class of M/G/∞ processes. Consider a system
to which particles arrive following a Poisson process; the particles are independent of each
other, and have i.i.d. lifetimes of random duration L (with finite mean 〈L〉 < ∞). The random
process tracking the number of ‘alive’ particles in the system is refereed to as an M/G/∞
process

ξ(t) =
∞∑

n=1

I(An � t < An + Ln) (6)

(t � 0), where An and Ln denote, respectively, the arrival epoch and the lifetime of particle
n (and I (E) denotes the indicator function of the event E). The class of M/G/∞ processes
originated from the modeling of Geiger–Müller counters—historically referred to as ‘type-II
counters’ [30]—and serves as the most fundamental queueing theory model of infinite-server
queueing systems and of infinite-broadband transmission channels [31, 32]. In physics,
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Table 1. Examples of ultra diffusions: examples 1–3 are Lévy processes, examples 4–5 are
stochastic integrals driven by symmetric stable Lévy motions, and examples 6–7 are M/G/∞
processes.

Temporal Fourier
Process function �(t) = function φ(θ) = Remarks

1 Poisson t 1 − exp(iθ)

2 Compound t 1 − 〈exp(iθJ )〉 J is the random jump amplitude.
Poisson Compound Poisson process are CTRWs

with exponential waiting times.

3 Symmetric t |θ |β 0 < β � 2 is the Lévy exponent.
stable Lévy β = 2 corresponds to

Brownian motion.

4 Ornstein– 1 − exp(−rβt) |θ |β r > 0 is the relaxation rate.
Uhlenbeck 0 < β � 2 is the Lévy exponent.

5 Fractional tβH |θ |β 0 < H < 1 is the Hurst parameter.
stable Lévy 0 < β � 2 is the Lévy exponent.

β = 2 corresponds to fractional
Brownian motion.

6 Standard
∫ t

0 Pr (L > s) ds 1 − exp(iθ) L is the random particle lifetime.
M/G/∞

7 Charged
∫ t

0 Pr (L > s) ds 1 − 〈exp(iθC)〉 L is the random particle lifetime.
M/G/∞ C is the random particle charge.

M/G/∞ processes underlie both linear and nonlinear shot noise processes [33]. The ultra-
diffusion structure of M/G/∞ processes is characterized by

ψ(t) =
∫ t

0
Pr(L > s) ds and φ(θ) = 1 − exp(iθ) (7)

(the Fourier function of M/G/∞ processes coincides with the Fourier function of Poisson
processes).

If the particles arriving at the aforementioned M/G/∞ system are charged—the particles
having i.i.d. electrical charges of random amplitude C—then the process tracking the system’s
overall charge is given by

ξ(t) =
∞∑

n=1

CnI (An � t < An + Ln) (8)

(t � 0), where Cn denotes the electrical charge of particle n (and where An and Ln are as
in equation (6)). If the particles’ generic lifetime L and charge C are independent random
variables, then the ultra-diffusion structure of ‘charged M/G/∞ processes’ is characterized
by

ψ(t) =
∫ t

0
Pr(L > s) ds and φ(θ) = 1 − exp(iCθ) (9)

(the Fourier function of ‘charged M/G/∞ processes’ coincides with the Fourier function of
compound Poisson processes).
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The aforementioned examples of ultra diffusions are summarized in table 1. We note that
ultra diffusions do not encompass the entire class of continuous time random walks (CTRWs)
[34]: ultra diffusions include only CTRWs with exponential waiting times—which coincide
with the class of compound Poisson processes (discussed above).

3. Universal generation of ultra diffusions

We now turn to explore a general superposition model of stochastic processes which is capable
of yielding ultra diffusion in a universal fashion. As in the definition of ultra diffusion, in
order to gain intuition we first re-examine the elemental example of Brownian motion.

Brownian motion is a macroscopic manifestation of a microscopic phenomenon. Indeed,
as observed by Sir Robert Brown, the jagged and erratic trajectory of a pollen particle suspended
in liquid is caused by the ‘bombardment effect’ of trillions of molecules hitting the particle at
random. As a general conceptual model of such a random motion, consider the trajectory of
a probe tossed into a turbulent stochastic ‘bath’. The probe is constantly impacted by random
‘gusts’—these impacts generating the probe’s random trajectory Y = (Y (t))t�0. A fairly
general mathematical model for the random probe trajectory Y is the impacts-superposition
model

Y (t) =
∑
τn�t

anXn(ωn(t − τn)), (10)

where Xn = (Xn(t))t�0 is the random ‘impact pattern’ by which gust n affects the probe, and
(τn, ωn, an) are the random ‘impact parameters’ of gust n—the gust’s initiation epoch τn � 0,
and the gust’s frequency ωn > 0 and amplitude −∞ < an < ∞.

The gusts’ impact patterns are assumed to be, statistically, of the same type—implying that
the random patterns {Xn} are i.i.d. copies of a generic random impact pattern X = (X(t))t�0,
which describes the effect of a single arbitrary gust on the probe’s trajectory. The gusts’ impact
parameters P = {(τn, ωn, an)}n form a random collection of points in the three-dimensional
domain [0,∞) × (0,∞) × (−∞,∞), and are assumed to be a Poisson process with intensity
λP(τ, ω, a) (τ � 0, ω > 0,−∞ < a < ∞) [35].

Poisson processes are the most commonly applied statistical model for the random
scattering of points in general domains—with applications ranging from insurance and finance
[36] to queueing systems [37]. The informal meaning of the Poissonian intensity λP(τ, ω, a)

is as follows: a particle with propagation parameters belonging to the infinitesimal box
(τ, τ + dτ) × (ω, ω + dω) × (a, a + da) exists with the probability λP(τ, ω, a) dτ dω da.

The superposition model of equation (10) was shown to yield—in a universal fashion—
anomalous diffusion [38]. The universal generation of anomalous diffusion emanated from
the following ‘MSD-invariance’ question: Is there a class of intensities λP(τ, ω, a) which
render the MSD of the probe’s trajectory Y invariant, up to a scale factor, with respect to the
gusts’ impact pattern X? The answer obtained is affirmative, and the resulting MSD admits
the universal power-law form

〈Y (t)2〉 = cX · tα, (11)

where cX is a coefficient depending on the gusts’ impact pattern X. Thus, in the context of
the superposition model of equation (10), ‘MSD-invariance’ exclusively yields anomalous
diffusion.

In this communication we replace the MSD characterization of transport processes
by a Fourier characterization—leading, in turn, to the class of ultra diffusions. In the
context of the superposition model of equation (10) the Fourier analog of the aforementioned
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‘MSD-invariance’ question is the following ‘Fourier-invariance’ question: Is there a class of
intensities λP(τ, ω, a) which render the probe’s trajectory Y a ultra diffusion—with temporal
function ψ(t) and Fourier function φ(θ) which are invariant with respect to the gusts’ impact
pattern X?

An analysis based on probabilistic conditioning, and on Campbell’s theorem of the theory
of Poisson processes ([35], section 3.2), asserts that the answer to the ‘Fourier-invariance’
question is affirmative: ‘Fourier invariance’ holds if and only if the intensity λP(τ, ω, a)

admits the functional form

λP(τ, ω, a) = ϕ(τω) · ω−α · |a|−1−β, (12)

where ϕ(s) (s � 0) is a non-negative valued function, α is a positive exponent and β is an
exponent taking values in the range 0 < β < 2. The function ϕ(s) couples together the gusts’
initiation epochs and frequencies, and is henceforth termed the ‘coupling function’. Different
choices of the coupling function ϕ(s) result in different ‘impact scenarios’. For example,
setting the coupling function ϕ(s) to be a constant function yields a ‘steady-state scenario’ in
which the gusts impact the probe in a time-homogeneous fashion. On the other hand, setting
the coupling function ϕ(s) to be Dirac’s delta function yields a ‘big-bang scenario’ in which
all gusts impact the probe at time t = 0.

A further analysis implies that the intensity of equation (12) yields the Fourier
characterization

〈exp(iθY (t))〉 = exp(−cX · tα · |θ |β). (13)

Namely, ‘Fourier invariance’ implies that the universal functional structure of both the temporal
and Fourier functions is the power law: ψ(t) = tα (α > 0) and φ(θ) = |θ |β (0 < β < 2). On
the one hand, the universal temporal function ψ(t) = tα is the ‘MSD equivalent’ of anomalous
diffusion. On the other hand, the universal Fourier function φ(θ) = |θ |β characterizes the
infinite-variance symmetric stable Lévy laws (0 < β < 2). ‘Fourier invariance’ hence yields
the simultaneous display of both temporal and amplitudinal anomalous statistics.

The Fourier characterization of equation (13) coincides with the ultra-diffusion structure
of fractional stable Lévy motions with the Hurst exponent H = α/β. Yet, this does not
imply that the probe’s trajectory Y—generated by intensities admitting the functional form of
equation (12)—is a fractional stable Lévy motion. Indeed, the definition of ultra diffusion
is based on the Fourier characterization of the random variables Y (t) (t � 0), and does
not characterize the entire stochastic process Y = (Y (t))t�0. Namely, different stochastic
processes can admit the Fourier characterization of equation (13)—yet there is only one
fractional stable Lévy motion with the Hurst exponent H = α/β and Lévy exponent β.

The Fourier characterization of equation (13) implies that the probe’s trajectory Y—
generated by intensities admitting the functional form of equation (12)—has an intrinsic
self-similar structure: for all t � 0 we have

Y (t)
Law= tα/β · Y (1) (14)

(the equality sign representing equality in law). Namely, the random variable Y (t) is equal,
in law, to the random variable Y (1) multiplied by the scale factor tα/β . The intrinsic self-
similar structure of equation (14) is a weak form of statistical self-similarity [39]—displayed
by symmetric stable Lévy motions, fractional Brownian motions and fractional stable Lévy
motions—in which the processes’ trajectories are statistically invariant under ‘zoom-in’ and
‘zoom-out’ operations. The universal generation of statistical self-similarity, in the context of
the stochastic superposition model of equation (10), was explored in [40].
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The value of the coefficient cX appearing in equation (13) is given by

cX =
∫ ∞

0

∫ ∞

−∞
(1 − 〈exp(iaX(ω))〉) ϕ̃1+α(ω)

|a|1+β
dω da, (15)

where ϕ̃1+α(ω) = ∫ ∞
0 ϕ(s)(ω + s)−1−α ds (ω > 0). The integral appearing on the right-

hand side of equation (15) is required to converge. Hence, given a coupling function ϕ(s)

equation (15) prescribes the integrability condition that need be met by the impact pattern X.
Examples of coupling functions ϕ(s) include (i) the constant coupling function ϕ(s) = 1—
representing the ‘steady-state scenario’ in which the gusts impact the probe in a time-
homogeneous fashion—yielding ϕ̃1+α(ω) = ω−α; (ii) the Dirac coupling function ϕ(s) =
δ(s)—representing the ‘big-bang scenario’ in which all gusts impact the probe at time t = 0—
yielding ϕ̃1+α(ω) = ω−1−α; (iii) the Heaviside coupling function ϕ(s) = I (s > 1)—yielding
ϕ̃1+α(ω) = (1 + ω)−α .

4. Conclusions

In this communication we presented and explored the class of ultra diffusions, which
generalizes the class of ‘classic’ diffusions—accommodating transport processes displaying
both temporal and amplitudinal anomalous statistics. Counterwise to the class of anomalous
diffusions—which is based on the MSD characterization of transport processes, and hence
implicitly imposing a finite-variance condition—the class of ultra diffusions is based on a
Fourier characterization which does not require finite variance. Consequently, the class of
ultra diffusions engulfs a wide array of transport processes which are natural generalizations of
‘classic’ diffusions. Examples of ultra diffusions include: Lévy motions, fractional Brownian
motions, fractional stable Lévy motions, Ornstein–Uhlenbeck motions driven by symmetric
stable Lévy motions and M/G/∞ processes.

Ultra-diffusion transport processes are characterized by two functions: a ‘temporal
function’ ψ(t) which quantifies the transport’s temporal dispersion, and a ‘Fourier function’
φ(θ) which characterizes the transport’s underlying probability law. The temporal function
was shown to be a generalization of the MSD function—which coincides, up to a scale factor,
with the MSD in the case of finite-variance transport processes.

In the second part of the communication we considered a general stochastic superposition
model which is capable of generating, in a universal fashion, ultra diffusions. The superposition
model describes the random motion of a probe tossed into a stochastic bath. The probe’s
trajectory Y is the superposition of the effects of all gusts impacting it. The gusts are i.i.d. and
share a statistically common impact pattern X representing the gusts–probe interaction, and
each gust has its own random impact parameters—initiation epoch, frequency and amplitude.
Our aim was to characterize the Poisson statistics of the impact parameters P which render
the probe’s motion a universal ultra diffusion: characterize the class of intensities λP(τ, ω, a)

for which the probe’s trajectory Y is a ultra diffusion—with temporal function ψ(t) and
Fourier function φ(θ) which are invariant with respect to the gusts’ impact pattern X. The
corresponding ‘universal’ temporal and Fourier functions turned out to be power laws: the
temporal power law ψ(t) = tα (α > 0) implying a generalization of anomalous diffusion and
the Fourier power law φ(θ) = |θ |β (0 < β < 2) implying infinite-variance symmetric stable
Lévy laws. Hence—in the context of the aforementioned stochastic superposition model—the
‘universal’ ultra-diffusion statistics display, simultaneously, both temporal and amplitudinal
anomalies.

This communication provides theoretical and experimental physicists a methodological
approach capable of quantifying and classifying a wide array of transport processes via a
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single and unified ultra-diffusion framework. The ultra-diffusion framework is particularly
suited to model transport processes exhibiting both ‘anomalous diffusion’ temporal behavior
and ‘fat-tailed’ amplitudinal Lévy fluctuations.

References

[1] Van Kampen N G 2007 Stochastic Processes in Physics and Chemistry 3rd edn (Amsterdam: Elsevier)
[2] Bouchaud J P and Georges A 1990 Phys. Rep. 195 12
[3] Metzler R and Klafter J 2000 Phys. Rep. 339 1
[4] Metzler R and Klafter J 2004 J. Phys. A: Math. Gen. 37 R161
[5] Klafter J and Sokolov I M 2005 Phys. World 18 29
[6] Shlesinger M F, Zaslavsky G M and Klafter J 1993 Nature 363 31
[7] Shlesinger M F 2001 Nature 411 641
[8] Janicki A and Weron A 1994 Simulation and Chaotic Behavior of Stable Stochastic Processes (New York:

Dekker)
[9] Samrodintsky G and Taqqu M S 1994 Stable Non-Gaussian Random Processes (New York: Chapman and Hall)

[10] Viswanathan G M et al 1999 Nature 401 911
[11] Condamin S et al 2007 Nature 450 77
[12] Sims D W et al 2008 Nature 451 1098
[13] Brockmann D, Hufnagel L and Geisel T 2006 Nature 439 462
[14] Gonzalez M C, Hidalgo C A and Barabasi A L 2008 Nature 453 779
[15] Barthelemy P, Bertolotti J and Wiersma D S 2008 Nature 453 495
[16] Chechkin A V et al 2003 Phys. Rev. E 67 010102
[17] Eliazar I and Klafter J 2005 J. Stat. Phys. 119 165
[18] Magdziarz M 2008 Physica A 387 123
[19] Coffey W T, Kalmykov Yu P and Waldron J T 2004 The Langevin Equation 2nd edn (Singapore: World

Scientific)
[20] Mandelbrot B B and Van Ness J W 1968 SIAM Rev. 10 422
[21] Molz F J, Liu H H and Szulga J 1997 Water Resour. Res. 33 2273
[22] Allegrini P, Buiatti M, Grigolini P and West B J 1998 Phys. Rev. E 57 4558
[23] Ivanov P Ch et al 1999 Nature 399 461
[24] Lutz E 2001 Phys. Rev. E 64 051106
[25] Taqqu M S and Wolpert R 1983 Z. Wahrscheinlichkeitstheorie verw. Gebiete 62 53
[26] Maejima M 1983 Z. Wahrscheinlichkeitstheorie verw. Gebiete 62 235
[27] Chechkin A V, Gonchar V Y and Szydlowski M 2002 Phys. Plasmas 9 78
[28] Watkins N et al 2005 Space Sci. Rev. 121 271
[29] Weron A, Burnecki K, Mercik S and Weron K 2005 Phys. Rev. E 71 016113
[30] Takacs L 1962 Introduction to the Theory of Queues (Oxford: Oxford University Press)
[31] Gross D and Harris C M 1974 Fundamentals of Queueing Theory (New York: Wiley)
[32] Eliazar I 2007 Queueing Syst. 55 71
[33] Eliazar I and Klafter J 2007 Phys. Rev. E 75 031108
[34] Montroll E W and Weiss G H 1965 J. Math. Phys. 6 167
[35] Kingman J F C 1993 Poisson Processes (Oxford: Oxford University Press)
[36] Embrechts P, Kluppelberg C and Mikosch T 1997 Modelling Extremal Events for Insurance and Finance (New

York: Springer)
[37] Wolff R W 1989 Stochastic Modeling and the Theory of Queues (London: Prentice-Hall)
[38] Eliazar I and Klafter J 2009 J. Phys. A: Math. Theor. 42 472003
[39] Embrechts P and Maejima M 2002 Self-similar Processes (Princeton: Princeton University Press)
[40] Eliazar I and Klafter J 2009 Phys. Rev. Lett. 103 040602

8

http://dx.doi.org/10.1016/0370-1573(90)90099-N
http://dx.doi.org/10.1016/S0370-1573(00)00070-3
http://dx.doi.org/10.1088/0305-4470/37/31/R01
http://dx.doi.org/10.1038/363031a0
http://dx.doi.org/10.1038/35079702
http://dx.doi.org/10.1038/44831
http://dx.doi.org/10.1038/nature06201
http://dx.doi.org/10.1038/nature06518
http://dx.doi.org/10.1038/nature04292
http://dx.doi.org/10.1038/nature06958
http://dx.doi.org/10.1038/nature06948
http://dx.doi.org/10.1103/PhysRevE.67.010102
http://dx.doi.org/10.1007/s10955-004-2710-9
http://dx.doi.org/10.1016/j.physa.2007.08.016
http://dx.doi.org/10.1137/1010093
http://dx.doi.org/10.1029/97WR01982
http://dx.doi.org/10.1103/PhysRevE.57.4558
http://dx.doi.org/10.1038/20924
http://dx.doi.org/10.1103/PhysRevE.64.051106
http://dx.doi.org/10.1007/BF00532163
http://dx.doi.org/10.1007/BF00538799
http://dx.doi.org/10.1063/1.1421617
http://dx.doi.org/10.1007/s11214-006-4578-2
http://dx.doi.org/10.1103/PhysRevE.71.016113
http://dx.doi.org/10.1007/s11134-006-9005-6
http://dx.doi.org/10.1103/PhysRevE.75.031108
http://dx.doi.org/10.1063/1.1704269
http://dx.doi.org/10.1088/1751-8113/42/47/472003
http://dx.doi.org/10.1103/PhysRevLett.103.040602

	1. Introduction
	2. Examples of ultra diffusions
	3. Universal generation of ultra diffusions
	4. Conclusions
	References

